BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF
 PRE AKTU EXAM (EVEN SEMESTER 2022-23)
 July-2023

Course:
Subject:
Engineering
Mechanics
M.M.

100

Semester:

Subject Code:
KME-452

Time:
3:00 hrs
Roll No. \qquad

SECTION-A

Marks: 10*2=20

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	State the principle of transmissibility of force.	L2	CO1
b.	What is the difference between collinear and concurrent forces?	L2	CO1
c.	List the assumptions used in the analysis of a truss.	L2	CO2
d.	Define point of contraflexure. In what type of beams this point occurs.	L2	CO2
e.	What is the importance of axis of symmetry in determination of centre ofgravity of a body?	L2	CO3
f.	Explain the term radius of gyration.	L2	CO3
g.	Explain D'Alembert's principle.	L2	CO4
h.	Find the work done in pulling a weight 500 N through a distance of 5 m along a horizontal surface by a force of 200 N , whose line of action makes an angle of 30° with the horizontal.	L3	CO4
i.	Differentiate between resilience and toughness.	L2	CO5
j.	What do you understand by term pure bending?	L2	CO5

SECTION-B

2. Attempt ALL questions. Each questions carry equal marks.

Marks: 3*10=30

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Determine the mass moment of inertia of cone about its central axis. Take mass of cone as M and radius as R .	L3	CO3
or			
a.	Determine the moment of inertia of the ' T ' section with respect to centroidalX-X axis. Section as shown in figure. Figure. 1	L3	CO3

| b. | A long rod AB is supported at the upper edge of a wall of height 1.5
 m and ona horizontal floor as shown in fig. 2. If the lower end of the
 rod moves with a velocity $\mathrm{V}_{\mathrm{A}}=2 \mathrm{~m} / \mathrm{s}$ find the velocity of the contact
 point C of the rod and theangular velocity of the rod, when the rod is
 60° to the horizontal. | L3 | CO4 |
| :---: | :--- | :--- | :--- | :--- |

SECTION-C

3. Attempt ANY ONE questions. Each questions carry equal marks.

Marks: $\mathbf{1 * 1 0 = 1 0}$

Q. No.	Question	Level of Taxonomy	Course Outcome	
a.	A ladder 6 m long has a mass of 18 kg and its center of gravity is 2.4 m from the bottom. The ladder is placed against a vertical wall so that it makes an angle of 60° with the ground. How far up the ladder can a 72-kg man climb before the ladder is on the verge of slipping? The angle of friction at all contact surfaces is 15°.	L2	CO1	
b.	Determine the magnitude, direction, and position of a single force P, whichkeeps in equilibrium the system of forces acting on the corners of a rectangular block as shown in Fig. The position of force P may be stated byreference to axes with origin O and coinciding with the edges of the block	L2	CO1	

4. Attempt ANY ONE questions. Each questions carry equal marks.

Marks: 1*10=10

Q. No.	Question	Level of Taxonomy	Course Outcome

a.	Draw the SFD and BMD for the beam shown in fig. Figure. 4	L3	CO 2
b.	Draw the shear force \& bending moment diagram for a loaded beam as shownin figure. Figure. 5	L3	CO 2

5. Attempt ANY ONE questions. Each questions carry equal marks.

Marks: $1 * 10=10$

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Find the moment of inertia of shaded area shown in fig. 7 about centroidal x-axis and also about axis AB.		
b.	Derive an expression for mass moment of inertia about axis of symmetry for aright solid circular cylinder.	LS	03

6. Attempt ANY ONE questions. Each questions carry equal marks.

Marks: $1 * 10=10$

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Two bodies A and B of masses 5 kg and 20 kg are connected by an inclined string. A horizontal force P of 100 N is applied to block B. Calculate the tension in the string and acceleration of the system. Take coefficient of friction for all surfaces as 0.25. Refer figure.	L3	CO4
		B	

	may be neglected. Find the tension on the two parts of the two rope and the linear acceleration of the blocks.	

7. Attempt ANY ONE questions. Each questions carry equal marks.

Marks: 1*10=10

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Derive the pure torsion equation where symbols has usual meaning	L3	CO5
b.	$\frac{\mathrm{T}}{\mathrm{J}}=\frac{\tau}{\mathrm{R}}=\frac{\mathrm{G} \theta}{\mathrm{L}}$	A solid shaft of 150 mm diameter is used to transmit torque. Find the maximum torque transmitted by the shaft if the maximum shear stress inducedto the shaft is $45 \mathrm{~N} / \mathrm{mm}^{2}$.	$\mathrm{L3}$

